Docs For AI
Performance

Performance Overview

Frontend performance optimization strategies - loading, rendering, and runtime performance

Performance Optimization

Performance directly impacts user experience, SEO, and business metrics. This section covers comprehensive strategies for optimizing frontend applications.

Core Topics

Core Web Vitals

Google's Core Web Vitals are essential metrics for measuring user experience.

MetricDescriptionGoodNeeds ImprovementPoor
LCPLargest Contentful Paint≤2.5s2.5s-4s>4s
INPInteraction to Next Paint≤200ms200ms-500ms>500ms
CLSCumulative Layout Shift≤0.10.1-0.25>0.25

Performance Budget Example

{
  "timings": {
    "firstContentfulPaint": 1500,
    "largestContentfulPaint": 2500,
    "interactive": 3500,
    "totalBlockingTime": 300
  },
  "sizes": {
    "javascript": 300000,
    "css": 50000,
    "images": 500000,
    "fonts": 100000,
    "total": 1000000
  },
  "requests": {
    "javascript": 10,
    "css": 3,
    "images": 20,
    "fonts": 4,
    "total": 50
  }
}

Optimization Workflow

Performance Optimization Cycle
├── Measure
│   ├── Lighthouse audit
│   ├── Core Web Vitals
│   └── Real User Monitoring
├── Analyze
│   ├── Identify bottlenecks
│   ├── Prioritize by impact
│   └── Set improvement targets
├── Optimize
│   ├── Implement changes
│   ├── A/B test if needed
│   └── Document improvements
└── Monitor
    ├── Track metrics over time
    ├── Alert on regressions
    └── Continuous improvement

Quick Wins

Critical Path Optimization

  • Inline critical CSS
  • Defer non-critical JavaScript
  • Preload key resources
  • Use resource hints (preconnect, prefetch)

Asset Optimization

  • Compress images (WebP, AVIF)
  • Minify CSS and JavaScript
  • Enable gzip/brotli compression
  • Optimize web fonts

Caching Strategy

  • Set proper cache headers
  • Use service workers for offline
  • Implement stale-while-revalidate
  • Version assets with content hashes

On this page