Docs For AI
Optimization

Database Optimization

Database performance optimization - query optimization, execution plans, and caching strategies

Database Optimization

Database performance optimization is critical for building scalable applications. This section covers techniques to identify and resolve performance bottlenecks.

Why Optimize?

Performance Impact:
┌─────────────────────────────────────────────────────────┐
│ Slow queries → High latency → Poor user experience      │
│ Resource waste → Higher costs → Scalability issues      │
│ Lock contention → Throughput drop → System bottleneck   │
└─────────────────────────────────────────────────────────┘

Optimization benefits:
- Faster response times
- Lower infrastructure costs
- Better scalability
- Improved user experience

Optimization Workflow

┌─────────────────────────────────────────────────────────┐
│ 1. Identify Problem                                     │
│    - Monitor slow queries                               │
│    - Analyze resource usage                             │
│    - Profile application                                │
└──────────────────────┬──────────────────────────────────┘

┌──────────────────────▼──────────────────────────────────┐
│ 2. Analyze Root Cause                                   │
│    - Examine execution plans                            │
│    - Check index usage                                  │
│    - Review query patterns                              │
└──────────────────────┬──────────────────────────────────┘

┌──────────────────────▼──────────────────────────────────┐
│ 3. Implement Solution                                   │
│    - Add/modify indexes                                 │
│    - Rewrite queries                                    │
│    - Implement caching                                  │
└──────────────────────┬──────────────────────────────────┘

┌──────────────────────▼──────────────────────────────────┐
│ 4. Measure Results                                      │
│    - Compare before/after metrics                       │
│    - Validate improvements                              │
│    - Monitor for regressions                            │
└─────────────────────────────────────────────────────────┘

Common Performance Issues

IssueSymptomsSolution
Missing indexesFull table scans, slow WHERE/JOINAdd appropriate indexes
N+1 queriesMany small queries, high latencyUse JOINs or batch queries
Large result setsHigh memory usage, slow transfersPagination, projections
Lock contentionWait times, deadlocksOptimize transactions, indexing
Outdated statisticsPoor query plansUpdate statistics regularly

Monitoring Queries

PostgreSQL Slow Query Log

-- Enable slow query logging
ALTER SYSTEM SET log_min_duration_statement = '1000';  -- 1 second

-- View long-running queries
SELECT pid, now() - pg_stat_activity.query_start AS duration, query
FROM pg_stat_activity
WHERE state != 'idle'
  AND now() - pg_stat_activity.query_start > interval '5 seconds';

-- Top 10 slowest queries (requires pg_stat_statements extension)
SELECT query, calls, mean_exec_time, total_exec_time
FROM pg_stat_statements
ORDER BY mean_exec_time DESC
LIMIT 10;

MySQL Slow Query Log

-- Enable slow query log
SET GLOBAL slow_query_log = 'ON';
SET GLOBAL long_query_time = 1;  -- 1 second

-- View process list
SHOW PROCESSLIST;

-- Query performance schema
SELECT * FROM performance_schema.events_statements_summary_by_digest
ORDER BY SUM_TIMER_WAIT DESC
LIMIT 10;

Topics

  • Query Optimization - Writing efficient queries, avoiding common pitfalls
  • Execution Plans - Understanding and analyzing query execution plans
  • Caching - Database caching, application-level caching, cache invalidation

On this page